
 International Journal of Computer Trends and Technology Volume 72 Issue 5, 1-10, May 2024

ISSN: 2231–2803 / https://doi.org/10.14445/22312803/IJCTT-V72I5P101 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

E-Delivery Microservices Based Multi-Channel

Communications Delivery Framework

Amol Gote

Solutions Architect, New Jersey, USA.

Corresponding Author : aamolgotewrites@gmail.com

Received: 01 March 2024 Revised: 05 April 2024 Accepted: 21 April 2024 Published: 10 May 2024

Abstract - Effective client communication is paramount for building strong customer relationships and driving business

success in the rapidly evolving startup landscape. However, managing and delivering communications across multiple

channels can be complex and resource-intensive. This paper presents a comprehensive microservices-based E-Delivery

framework to streamline and optimize client communication processes. The E-Delivery framework comprises three core

logical components: Managing Templates, E-Delivery Service, and Core Notification Service. This modular architecture

facilitates scalability and clear separation of concerns, allowing each component to scale independently based on

communication demands. The Framework leverages the power of technologies such as Apache Kafka, AWS Simple

Notification Service (SNS), and AWS Simple Email Service (SES) to ensure efficient and reliable message delivery. A key

novelty of the E-Delivery framework lies in its template-driven approach, enabling consistent and personalized communication

across channels while adhering to brand guidelines. The paper explores the real-world implementation of the Framework at

iCreditWorks, a fintech company operating in a multilingual environment, showcasing its effectiveness in delivering diverse

communications to clients. The E-Delivery framework offers numerous advantages, including scalability through event-driven

architecture, consistency through templates, separation of concerns, flexibility with Kafka streams, and abstraction of third-

party service dependencies. By addressing the complexities of client communication, this Framework empowers startups to

enhance customer engagement, build stronger relationships, and ultimately drive business growth.

Keywords - Client Communications, Microservices, Communication Framework, Template Driven Messaging, Apache Kafka.

1. Introduction
In the dynamic and competitive FinTech industry,

organizations face numerous challenges in acquiring and

retaining customers. Effective client communication

addresses these challenges, fosters strong relationships, and

drives business growth. However, managing and delivering

communications across multiple channels can be daunting,

often requiring significant resources and expertise.

This research identifies a critical gap in existing industry

solutions, specifically, the absence of an integrated,

microservices-based framework that supports scalable,

resilient services responsible for sending client

communications tailored for FinTech startups.

Most existing implementations focus primarily on

documentation for specific cloud services delivering

communications to specific channels and do not provide a

framework or design approach that supports multi-channel

communication (SMS, email, push notifications, and letters)

for FinTech clients.

This research paper presents a comprehensive solution –

the E-Delivery microservices-based framework – designed to

simplify and streamline the process of delivering client

communications for organizations. The Framework leverages

a modular architecture, incorporating three core logical

components: Managing Templates, E-Delivery Service, and

Core Notification Service.

By delving into the intricacies of this Framework, this

paper aims to provide organizations with a structured

approach to efficiently handle client communications,

encompassing various channels such as SMS, email, push

notifications, and even physical letters. The Framework’s

logical separation of components enables scalability and

promotes clear separation of concerns, ensuring each

component can evolve independently to meet growing

communication demands.

This research paper explores the Framework’s

architecture, implementation, and real-world use case at

iCreditWorks, a fintech company. It seeks to equip

organizations with a powerful tool to enhance customer

http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Amol Gote / IJCTT, 72(5), 1-10, 2024

2

engagement, build stronger relationships, and ultimately

drive business success in the competitive FinTech landscape.

By delving into the intricacies of this Framework, this

paper aims to equip organizations with a structured approach

to efficiently handle client communications, enhancing

customer engagement and driving business success in the

competitive FinTech landscape.

2. Literature Review
Effective client communication has long been

recognized as critical in building strong customer

relationships and driving business success, especially in the

startup ecosystem. Client communication in the financial

industry has transitioned from traditional face-to-face

interactions, paper mail, and phone calls to digital platforms,

including emails and instant messaging. Evolution has been

driven by the need for faster, more efficient, and cost-

effective communication solutions that align with changing

consumer behaviors and technological advancements. As

technology has advanced, so has the complexity of managing

these communications, especially with the rise of global and

multilingual customer bases and multiple channels.

However, managing and delivering communications across

multiple channels can be complex and resource-intensive,

necessitating innovative solutions.

In recent years, microservices architecture has gained

significant traction as a means of developing scalable and

maintainable applications (Fowler & Lewis, 2014; Newman,

2015). By breaking down monolithic applications into

smaller, independent services, microservices facilitate easier

management, deployment, and scalability of individual

components (Wolff, 2016). This approach aligns well with

the need for scalable and flexible communication systems in

the rapidly evolving startup landscape.

Several studies have explored the application of

microservices in various domains, including e-commerce,

healthcare, and finance. However, research on leveraging

microservices for sending client communications is relatively

limited.

Event-driven architectures, often facilitated by

technologies like Apache Kafka, have been widely adopted

in microservices-based systems to enable asynchronous

communication and decoupling of services (Kleppmann,

2017; Narkhede et al., 2017). This approach can be

particularly beneficial in communication systems, where

message delivery may involve multiple steps and third-party

integrations. The E-Delivery framework incorporates an

event-driven architecture that supports the asynchronous

delivery of communications across multiple channels and

ensures that these communications are fault-tolerant and

reliably ordered.

Template-driven messaging has been explored in various

contexts, such as email marketing and customer relationship

management (CRM) systems. By leveraging templates,

organizations can maintain consistency and personalization

in their communications while adhering to brand guidelines

and ensuring compliance. Framework’s use of dynamic

templates across multiple communication channels,

including physical letters and not just digital messages, sets it

apart from existing studies. It allows for high personalization

and brand consistency, essential for customer engagement

and satisfaction in FinTech services.

While existing literature provides insights into

microservices architecture, event-driven systems, and

template-driven messaging, a comprehensive framework that

combines these elements to address the specific challenges of

client communication in the startup ecosystem is needed. The

E-Delivery Microservices-Based Framework aims to fill this

gap, offering a structured approach tailored to the needs of

startups operating in diverse industries and serving clients

across multiple delivery channels like SMS, email, and push

notifications.

3. Methodology
This research focuses on the E-Delivery Microservices-

Based Framework, a comprehensive solution designed to

streamline client communication processes for startups. At

its core, the E-Delivery framework comprises three

fundamental components, each playing a critical role in the

communication process:

Managing Templates: This component involves creating,

maintaining, and managing communication templates that

combine static text with dynamic variables for

personalization.

E-Delivery Service: The E-Delivery Service acts as a

communication hub, exposing endpoints for other business

domain services to initiate client communication.

Core Notification Service: The Core Notification

Service integrates with third-party cloud services to ensure

the delivery of communications across various channels,

including SMS, email, and push notifications.

Amol Gote / IJCTT, 72(5), 1-10, 2024

3

Fig. 1 E-Delivery logical components

3.1. Managing Templates

Effective communication relies on well-designed

message templates. The concept of ‘Comm’ or

Communication is introduced, with each being uniquely

identified by a code such as ICC-APP01. Within a Comm,

multiple communication channels are catered to, including

PUSH, SMS, EMAIL, and Letter, each requiring its

dedicated template. These templates can support various

languages (locales).

These templates are essential for our messaging strategy,

combining static text with dynamic variables for

personalization. Plain text templates are used for SMS and

Push, and HTML templates are used for email and letter

communications. The dedicated content team creates,

maintains, and publishes these templates, ensuring they

convey information while aligning with the brand identity.

The content team generates and maintains high-quality

content that aligns with the organization’s branding and

communication strategies. This includes web content,

marketing collateral, digital and print brochures, email

campaigns, social media posts, etc.

These templates have a specific structure comprising

static text content and dynamic content template variables,

identified by two opening braces and two closing braces,

e.g., {{CustomerFirstName}}, {{CustomerLastName}}. They

undergo a life cycle with stages like Draft, Approved, and

Published. Additionally, they are versioned, with each

publication incrementing the version. Templates are initially

developed, tested, and approved in lower development and

testing environments and then moved to the production

environment.

Amol Gote / IJCTT, 72(5), 1-10, 2024

4

Below is the sample communication template:

Fig. 2 Communication template

3.2. E-Delivery Service

The second core component, the E-Delivery Service,

plays a pivotal role in the Framework, serving as the

communication hub for various business domain services. It

exposes an endpoint, allowing other services to initiate client

communication. Send communications endpoint:

POST {{baseUrl}}/api/edelivery/v1/send

Request body:

Fig. 3 Request body Send API

notifCode: This serves as an identifier, signaling the type

of communication the invoking business domain service

intends to send. It helps route the request to the appropriate

communication template.

loanAcctId: This unique loan account identifier links the

communication to the specific customer’s loan account. This

identifier can differ for different lines of business.

fields: A map of key-value pairs representing dynamic

content to be injected into the communication template. Keys

correspond to dynamic variables within the template, such as

{{CustomerFirstName}} and {{CustomerLastName}}.

Here is the sequence diagram for things performed as

part of the e-delivery.

Amol Gote / IJCTT, 72(5), 1-10, 2024

5

Fig. 4 E-Delivery sequence diagram

Each communication has specific attributes, including a

designated delivery time window. If the current time falls

outside the window, the client communication is queued for

later delivery.

User preferences for communications and locale settings

are retrieved based on a key identifier, such as the loan

account identifier. User preferences include choices

regarding the delivery of SMS and Email notifications,

allowing users to decide whether they want both delivered or

only one.

The service fetches all channels

(PUSH/SMS/EMAIL/LETTER/INBOX) for the given

communication code and loads individual templates into

memory for each channel.

The delivery of the communications process begins with

push notifications and continues with SMS, email, letter, and

inbox messages.

For each channel, the service constructs a message

template that needs to be sent to the end user.

Templates feature dynamic templated variables, divided

into two types: common variables shared across all

templates, such as social media links or contact emails

(referred to as global fields), and custom fields sent as part of

the request payload. The service replaces templated variables

with values from the request payload for custom fields and

uses mapped fields from the configuration database for

global variables, ensuring the completion of individual

templates.

Once the message is entirely constructed, the service

calls the notification service to send communication. The

notification service’s payload includes an attribute indicating

the type of communication (Email/SMS/Push).

Inbox messages are private messages visible in mobile

applications. For the Inbox channel, the message generated

E-Delivery
Customer
Database

Queuing and
Scheduled

Delivery

Core

Notification
Service

User Preferences

Check For Delivery time

Queued for Scheduled Delivery

Periodic

Runs to
send

scheduled

comms

Channels and Templates

Templates for each channel

Iterate through

each Channel

template

Populate each
template

Send notifiifcatioin for channel (SMS/Email/Push)

Saved paths in cloud Storage

Save Inbox

Success/Failure
Response

External
Business

Service

Amol Gote / IJCTT, 72(5), 1-10, 2024

6

from the filled template is saved in AWS S3 (Amazon Web

Services - Simple Storage Service), and its path is stored in

the database, associated with the business identifier and

comm code.

A similar pattern is followed in the Letter channel. The

message generated from the filled template is an HTML

document converted into a PDF format. These generated

letter PDFs are stored in AWS S3 and subsequently printed

and shipped.

This structured process ensures that messages are

efficiently delivered and customized to user preferences and

locales, enhancing the overall client communication

experience.

E-Delivery service also exposes an additional endpoint,

“send-direct.” This “send-direct” endpoint is like the

previous one, with the critical difference that it sends the

communication immediately and does not queue it. It is

essential for consuming business application services to

ensure they specify the target channel (SMS/Email) and

destination when using this endpoint.

POST {{baseUrl}}/api/edelivery/v1/send-direct

Fig. 5 Send direct API request

3.3. Core Notification Service

Lastly, the Core Notification Service plays a crucial role

in ensuring the delivery of communications across different

channels to end users, consisting primarily of two

components:

● Core Notification API

● Core Notification Engine

Fig. 6 Core notification service

Notification

Message

Producer

Producer

Kafka Topic

user-notification

Core Notification API

SMS Topic

(user-notification-

sms)

Push Topic (user-

notification- push-

ios)

Push Topic (user-

notification- push-

android)

Stream Processor

Kafka Streams

Core Notification Engine

Email Topic

(user-notification-

email)

Email Kafka

Listener

SMS Kafka

Listener
Push IOS Kafka

Listener

Push Android

Kafka Listener

AWS Simple

Email Service

(SES)

AWS Simple Notification

Service (SNS)

Stream Listener

AWS Notification Services

Amol Gote / IJCTT, 72(5), 1-10, 2024

7

3.3.1. Core Notification API

This component exposes an endpoint responsible for

initiating the final delivery of various communications.

Sample requests for email and SMS are as follows:

Email Request:

Fig. 7 Email request

SMS Request:

Fig. 8 SMS request

The API performs validation checks on the received

request payload and then queues the request with a Kafka

message in a topic called “user-notification”.

Attachments in the email request are not received as

binary files but as AWS S3 document paths. These files are

retrieved from AWS S3 and sent as attachments, with the

filename specified as “attachmentTargetFilename.”

The “message” attribute contains the communication

body, which is a lengthy HTML body in the case of email.

Since the API pushes the message to the Kafka topic, its

response time is less than 100 milliseconds.

3.3.2. Core Notification Engine

This is where the messages delivered to different

channels fan out and get delivered to the end user through the

appropriate channel. It comprises of

● Stream Processor

● Stream listeners to each channel

● Channel-specific (SMS/EMAIL/PUSH) third-

party cloud services.

Stream Processor

This component subscribes to the “user-notification”

topic and receives messages, fanning them to different topics

dedicated to each communication channel.

Stream Listeners to each Channel

For all the topics mentioned above in the stream

processor, there are dedicated stream listeners; these listeners

are:

1. Email Stream Listener: This listener receives messages

from the “user-notification-email” topic and uses AWS

SES (Amazon Web Services - Simple Email Service) to

send emails to end users.

2. SMS Stream Listener: This listener receives messages

from the “user-notification-sms” topic and sends text

messages using AWS SNS (Amazon Web Services—

Simple Notification Service).

3. Push Notification for iOS Devices (APN Listener): This

listener receives messages from the “user-notification-

push-apn” topic and uses AWS SNS to send push

notifications to Apple devices.

4. Push Notification for Android Devices: This listener

receives messages from the “user-notification-push-

android” topic and uses AWS SNS to send push

notifications to Android devices.

Channel-specific (SMS/EMAIL/PUSH) third-party cloud

services.

The Framework leverages AWS SDK APIs to send

communications for all the AWS cloud services, such as

SNS and SES.

● AWS SNS will send push notifications to Android and

iOS devices.

● For SMS, use AWS SNS.

● AWS SES to send emails.

Once messages are successfully delivered using third-

party cloud services (in this case, AWS), all the above

listeners store the request ID and all related message

attributes in the database for an audit trail.

This ensures that a comprehensive record of all

communication activities is maintained for tracking and

verification purposes.

Once a notification is delivered, an AWS Lambda-based

implementation updates the delivery status and handles

bounced messages. However, that is a separate topic or

article, so it is out of the scope of this paper.

Amol Gote / IJCTT, 72(5), 1-10, 2024

8

4. Real-World Use Case: iCreditWorks
iCreditWorks, a fintech company, uses the E-Delivery

framework in its day-to-day operations.

4.1. Efficiency Across Languages and Channels

iCreditWorks operates in a multilingual environment,

serving clients in both English and Spanish. With over 350

communication codes designed to meet specific business

needs, the company has seamlessly integrated

communication across five channels: PUSH, SMS, Email,

Inbox, and Letter.

4.2. Delivery Metrics

iCreditWorks has successfully delivered a substantial

number of communications.

1. Notifications will be delivered till Feb 2024. It includes

SMS, Email, and push notifications. Physical letters

have been excluded as they are sent only if all digital

means of communication fail. The delivery rate has been

99.99%.

Fig. 9 Notifications delivered to Date.

Notification Channel Count #

SMS 231399

Email 277911

Push Notification - iOS 127937

Push Notification - Android 43170

2. 30 Days API Hits – For Jan to Feb 2024

Fig. 10 Thirty days API Hits

E-Delivery API Hit Count #

/api/notification/v1/ 78977

/api/edelivery/v1/send 42871

/api/edelivery/v1/send-direct 7018

So, whether a fintech startup or any business looking to

streamline client engagement, the E-Delivery framework

provides a reliable and efficient approach. The below section

covers its advantages more thoroughly.

4.3. Availability

The E-Delivery framework has achieved a service

availability of 99.9%. The Framework’s architecture features

loosely coupled components, which enhance the system’s

resilience and fault tolerance. This design allows individual

service components to fail and recover without disrupting the

entire system.

5. Advantages and Comparative Analysis
5.1. Scalability and Efficiency in the E-Delivery

Framework

The E-Delivery framework is designed to deliver

communications across multiple channels by leveraging

Apache Kafka’s robust capabilities alongside a strategically

segmented microservice architecture. This combination

allows the Framework to outperform traditional monolithic

systems and other contemporary microservice-based

solutions, primarily in scalability and reliability.

The logical separation of components within the E-

Delivery framework allows individual microservices to scale

independently, and Kafka plays a pivotal role in enabling this

scalability. Kafka’s distributed and event-driven architecture

enables seamless scaling of message processing. It provides a

highly reliable and fault-tolerant platform for handling

communication between components. It ensures that as the

system’s load increases, Kafka can efficiently distribute

messages across multiple consumers, allowing each

microservice to scale horizontally by adding more processing

nodes.

This dynamic scaling capability ensures that the E-

Delivery system can effectively handle growing

communication volumes, maintaining high performance and

responsiveness, all while minimizing downtime and service

disruptions.

5.1.1. Performance Metrics

When tested underload, the E-Delivery system

demonstrates superior performance and can handle 300

concurrent requests without degradation in response times;

this can be scaled up if there is a business need. The response

time for the service with 300 concurrent requests was around

500 milliseconds.

231399
277911

127937

43170

0

100000

200000

300000

Notifications Count

78977

42871

7018

0
20000
40000
60000
80000

100000

30 Days API Hits #

Amol Gote / IJCTT, 72(5), 1-10, 2024

9

5.1.2. Fault Tolerance

Kafka’s built-in fault tolerance mechanisms, such as

data replication and partitioning, ensure the system maintains

high availability and data consistency even in node failures.

5.2. Template Management

Using templates within the E-Delivery framework offers

several advantages for startups, including consistency in

communication across channels, efficient message generation

through reuse, personalized customer engagement, adherence

to brand guidelines, version control, testing, centralized

management, and creating an audit trail for compliance and

verification purposes.

Unlike traditional systems, which often require separate

tools and processes for each communication channel, leading

to potential inconsistencies and errors, the integrated

template system in E-Delivery ensures uniformity and

reduces the operational burden.

5.3. Separation of Concerns

Traditional communication systems often combine data

management, message delivery, and template management

into a monolithic structure.

A key strength of the E-Delivery framework is its well-

defined separation of concerns. The E-Delivery service

focuses on managing user data associated with specific lines

of business for the startup, ensuring a tailored approach to

communication. The Core Notification service is dedicated

solely to the efficient delivery of communications and

remains agnostic to the intricacies of individual business

lines. Furthermore, the Template Management component

resembles a typical content management system but offers a

more structured and organized approach, streamlining the

creation and maintenance of communication templates. This

clear separation optimizes the efficiency and clarity of each

component’s responsibilities within the Framework.

5.4. Resilience Through Kafka

Utilizing Kafka streams and topics within the E-Delivery

framework provides the flexibility to handle disruptions in

third-party services effectively. In case of issues with the

underlying third-party services, Kafka messages can be

seamlessly redirected to an alternative queue, allowing for

message reprocessing once the third-party service becomes

healthy again. This built-in resilience ensures that critical

client communications are not lost and can be delivered with

minimal disruption, contributing to the robustness of the

communication system.

Conventional communication systems often rely on a

linear approach to message handling, where disruptions in a

third-party service can lead to significant communication

delays or losses.

5.5. Decoupling from Third-Party Dependencies

The Core Notification service abstracts the dependency

on third-party services like AWS SNS and SES. This

abstraction allows for selecting equivalent services in

alternative cloud environments, such as Azure

Communication Services and Azure Notification Hub.

Compared to conventional systems that are often tightly

integrated with a single provider, this architecture

significantly reduces the risk of vendor lock-in. It allows

users to leverage the best capabilities of various cloud

services while maintaining a consistent and reliable service

delivery model.

6. Limitations
Implementing the E-Delivery microservices-based

framework may involve a learning curve. Customization to

fit specific business requirements requires time and effort.

Relying on cloud services like AWS SNS and AWS SES

can be advantageous. However, it also means the E-Delivery

system depends on these services’ availability and

performance, and downtime can impact operations.

Operating and maintaining the infrastructure,

microservices, and third-party services come with associated

costs.

7. Future Work
While the E-Delivery Microservices-Based Framework

provides a robust solution for managing multi-channel client

communications, several avenues for further development

can enhance its functionality, scalability, and adaptability.

Integration with Additional Cloud Services: The current

Framework primarily utilizes Amazon Web Services (AWS)

for its backend services like SNS and SES. Future iterations

could explore compatibility with other cloud platforms, such

as Microsoft Azure or Google Cloud Platform. This would

diversify the Framework’s dependency on cloud providers,

allow users to leverage different cloud-specific features, and

potentially reduce costs.

8. Conclusion
In conclusion, the E-Delivery framework presents a

structured framework for efficiently managing and delivering

client communications. This Framework offers several key

advantages, including logical component separation and

scalability, as well as the utilization of technologies like

Kafka, AWS SNS, and AWS SES. By streamlining

communication processes and ensuring personalized and

timely interactions with clients, the E-Delivery framework

contributes to building strong customer relationships. The

clear separation of responsibilities among its components,

including Template Management and the Core Notification

Amol Gote / IJCTT, 72(5), 1-10, 2024

10

service, optimizes efficiency and clarity within the

Framework. Moreover, the use of Kafka streams and topics

adds a layer of flexibility and resilience to the system,

ensuring that critical client communications are consistently

delivered, even in the face of disruptions in third-party

services.

While the E-Delivery microservices-based framework

may come with a learning curve and customization efforts,

its benefits far outweigh the initial challenges. Startups can

leverage the Framework to enhance communication through

different channels and improve client engagement.

In today’s dynamic business landscape, where client

communication plays a pivotal role in success, the E-

Delivery framework offers a solution that empowers one to

navigate the complexities of client interactions efficiently

and effectively.

References
[1] James Lewis, and Martin Fowler, Microservices, Martinfowler, 2014. [Online]. Available: https://martinfowler.com/articles/microservices.html.

[2] Sam Newman, Building Microservices: Designing Fine-Grained Systems, O'Reilly Media, pp. 1-280, 2015. [Google Scholar] [Publisher

Link]

[3] Eberhard Wolff, Microservices: Flexible Software Architecture, Addison-Wesley Professional, pp. 1-332, 2016. [Google Scholar]

[Publisher Link]

[4] Martin Kleppmann, Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and Maintainable Systems,

O'Reilly Media, pp. 1-616, 2017. [Google Scholar] [Publisher Link]

[5] Neha Narkhede, Gwen Shapira, and Todd Palino, Kafka: The Definitive Guide: Real-Time Data and Stream Processing at Scale,

O'Reilly Media, pp. 1-322, 2017. [Google Scholar] [Publisher Link]

[6] Amazon Simple Notification Service Documentation, Amazon Web Services. [Online]. Available: https://docs.aws.amazon.com/sns/

[7] Amazon Simple Email Service Documentation, Amazon Web Services. [Online]. Available: https://docs.aws.amazon.com/ses/

[8] Amazon Simple Storage Service Documentation, Amazon Web Services. [Online]. Available: https://docs.aws.amazon.com/s3/

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Building+Microservices+Designing+Fine-Grained+Systems+O%27Reilly+Media&btnG=
https://www.google.co.in/books/edition/Building_Microservices/jjl4BgAAQBAJ?hl=en&gbpv=0
https://www.google.co.in/books/edition/Building_Microservices/jjl4BgAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=E.+Wolff%2C+Microservices%3A+Flexible+Software+Architecture&btnG=
https://www.google.co.in/books/edition/Microservices/X7YzjwEACAAJ?hl=en
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Designing+data-intensive+applications+The+big+ideas+behind+reliable%2C+scalable%2C+and+maintainable+systems&btnG=
https://www.google.co.in/books/edition/Designing_Data_Intensive_Applications/p1heDgAAQBAJ?hl=en&gbpv=0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C31&q=Kafka+The+Definitive+Guide+Narkhede%2C+Shapira%2C+palinology&btnG=
https://www.google.co.in/books/edition/Kafka_The_Definitive_Guide/a3wzDwAAQBAJ?hl=en&gbpv=0
https://docs.aws.amazon.com/sns/
https://docs.aws.amazon.com/ses/

